ASSESSMENT OF D-TYPE ASTEROIDS ACCESSIBLE FOR A SPACE-MISSION RENDEZVOUS

M. Popescu^{1,2}, M. A. Barucci¹, D. Perna¹, M. Fulchignoni¹, S. Fornasier¹, A. Doressoundiram¹, C. Lantz^{1,3} and F. Merlin¹

¹LESIA, Observatoire de Paris, PSL Research University, CNRS, Univ. Paris Diderot, Sorbonne Paris Cité, UPMC Univ., Paris 06, Sorbonne Universités, 5 Place J. Janssen, Meudon Pricipal Cedex 92195, France (Marcel.Popescu@obspm.fr), ²Astronomical Institute of the Romanian Academy, 5 Cutitul de Argint, 040557 Bucharest, Romania, ³EAPS-MIT, Cambridge, MA, USA.

Context: In the framework of the NEOShield-2 observational campaign we present new results concerning the D-type asteroids candidates for a sample return mission. These asteroids are believed to be the most primitive ones in the solar system. Their low albedo and the linear featureless reddish spectrum in the 0.45-2.45 microns suggest a content abundant in organics and volatiles, which may hold clues regarding the planetary processes that preceded life on Earth (e.g. [1]).

A sample-return mission to a D-type asteroid will provide a major breakthrough for understanding the early history of the Solar System and the processes that led to the formation of planetary systems [2]. The selection of the candidates is difficult as there are very few asteroids classified as D/T types which satisfy the ΔV requirements: $\Delta V < 7$ km/s for a rendez-vous [3], and $\Delta V < 6$ km/s for a sample-return mission.

Results: We identified new D/T-type mission candidates as a by-product of the NEOShield-2 survey. This program aims to characterize the small near-Earth asteroids (NEAs)[4]. The observations were performed with the EFOSC2 instrument on NTT telescope. Within the 128 observed objects, we found eight D-types and another six T-types NEAs. The classification was made based on Bus-DeMeo taxonomy using the mean square error.

There are four D-type and five T-type asteroids with $\Delta V < 7$ km/s. This sample more than doubles the existing number of D/T types mission candidates (Table 1). Among these, 2009 DL46 (Fig. 1) and (52381) 1993 HA [5] require a ΔV below 5.5 km/s making them the best candidates currently known for a sample-return mission to a D-type primitive asteroid.

We complemented our set using the data existing in the EARN database. We searched for asteroids unambiguously classified as D or T types and with low-albedo (when it was available). Thus, we found another three D-types and two T-types (Table 1).

Figure 1. Visible spectrum of 2009 DL46 compared with the D and T templates.

pared with the D and T templates.				
Object	ΔV	Spec.	Tax.	Н
2009 DL46	5.080	v*	D	22.0
1993 HA	5.302	v*+n*	D	20.1
2002 AT4	5.548	v	D	21.0
2001 SG286	5.604	v+n	D	20.8
2015 LN21	6.354	v*	D	23.0
2015 LH14	6.863	v*	D	20.1
2009 CV	4.262	v*	Т	24.3
2001 SK162	5.568	v	T/D	17.8
2015 TZ237	5.634	v*	Т	24.3
2001 YE1	5.837	v	Т	20.5
2015 JJ2	6.419	v*+n	Т	21.9
2008 JV19	6.477	v*	Т	20.7
2016 PN38	6.607	v*	Т	21.2
2005 JE46	6.644	n	X/T	17.8

Table 1. D/T type candidates for a space-mission rendezvous. The spectral interval available is given (v - visible, n-near-infrared). The asterisk (*) shows the data obtained by NEOShield-2 survey.

Acknowledgments: This work was supported by the NEOShield-2 project (European Commission's Horizon 2020 program, contract No. PRO-TEC-2-2014-640351).

References:

[1] Hiroi T. et al. (2001), Science, 293, pp. 2234-2236; [2] Barucci M. A. et al. (2012), ExA, 33, pp. 645-684; [3] Binzel R. P. et al. (2004), M&PS, 29, p.351-366; [4] Barucci M. A. et al. (2016)

this issue; [5] Perna D. et al. (2016), A&A, a2016arXiv:1610.00896.